Note

Müntz's Theorem and Rational Approximation

In this note we prove the following

THEOREM 1. Let f(x) be any nonvanishing continuous function defined on $[0, \infty)$ for which $f(x) \to \infty$ as $x \to \infty$. Then for every sequence of integers: $0 = n_0 < n_1 < \cdots$ satisfying $\sum_{k=1}^{\infty} 1/n_k = \infty$ there is a sequence of polynomials $\sum_{l=0}^{k} a_l^{(k)} x^{n_l}$, k = 1, 2, ..., for which

$$\lim_{k \to \infty} \left\| \frac{1}{f(x)} - \frac{1}{\sum_{l=0}^{k} a_{l}^{(k)} x^{n_{l}}} \right\|_{L_{\infty}[0,\infty)} = 0.$$
(1)

Proof. By the well known theorem of Müntz and Szász every continuous function defined on a finite closed interval can be uniformly approximated as close as we like by polynomials $Q_{n_k}(x) = \sum_{l=0}^k a_l^{(l)} x^{n_l}$, where $\{n_l\}$ satisfies the above conditions. Thus,

$$\max_{0 \leqslant x \leqslant 2A_k} |f(x) - Q_{n_k}(x)| < \epsilon_k , \qquad (2)$$

where $\epsilon_k \rightarrow 0$ and $n_k \rightarrow \infty$.

Let now $n_q > n_k$ be sufficiently large. We prove

$$\left|\frac{1}{f(x)} - \frac{1}{Q_{n_k}(x) + (x/A_k)^{n_q}}\right| < 2\epsilon_k \tag{3}$$

for $0 \le x < \infty$. Clearly (3) is only a restatement of our theorem.

Now (3) is trivially satisfied for $0 \le x \le \frac{1}{2}A_k$ if n_q is sufficiently large since, by (2), $Q_{n_k}(x)$ is bounded away from 0 in $[0, 2A_k]$ and $(x/A_k)^{n_q} \le (1/2)^{n_q}$ in $0 \le x \le \frac{1}{2}A_k$. Next we prove (3) for $x > \frac{1}{2}A_k$. Clearly $1/f(x) < \epsilon_k/2$ for $x > \frac{1}{2}A_k$ since $f(x) \to \infty$ as $x \to \infty$.

$$\frac{1}{Q_{n_k}(x) + (x/A_k)^{u_q}} < \epsilon_k \text{ in } \frac{1}{2} A_k < x \leqslant 2A_k ,$$

since $Q_{n_k}(x) > 1/\epsilon_k$ there and $(x/A_k)^{n_q} > 0$. Now finally for $x > 2A_k$,

$$Q_{n_k}(x) + (x/A_k)^{n_q} > 1/\epsilon_k \tag{4}$$

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. 393

trivially holds for sufficiently large n_q (in fact we can start the proof by choosing n_q so that (4) should be satisfied for every $x \ge 2A_k$). This completes the proof of our theorem.

By using a well-known result of Clarkson and Erdös (*Duke Math. J.* 10 (1943), Theorem 3) we can easily prove

THEOREM 2. Let f(x) be a non vanishing continuous function defined on $[0, \infty)$. If there exists a sequence of polynomials $P_k(x) = \sum_{l=0}^k a_l^{(k)} x^{n_l}$ for which

$$\lim_{P_k\to\infty}\left\|\frac{1}{f(x)}-\frac{1}{P_k(x)}\right\|_{L_{\infty}[0,\infty)}=0,$$

where $0 = n_0 < n_1 < n_2 < \cdots < n_k$ and $\sum_{k=1}^{\infty} 1/n_k < \infty$, then f(x) is the restriction to $[0, \infty)$ of an entire function.

RECEIVED: October 28, 1974.

PAUL ERDÖS Hungarian Academy of Science Budapest, Hungary

A. R. REDDY Institute for Advanced Study Princeton, New Jersey 08540

Communicated by Oved Shisha