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Note

MUntz's Theorem and Rational Approximation

In this note we prove the following

THEOREM 1. Let f(x) be any nonvanishing continuous function defined on
[0, (0) for which f(x) -+ 00 as x -+ 00. Then for every sequence of integers:
0= no < ni < ... satisfying L:=l I/nle = 00 there is a sequence oj poly
nomials L~=o ai'C)xnl, k = I, 2, ... ,jor which

(1)

Proof By the well known theorem of Muntz and Szasz every continuous
function defined on a finite closed interval can be uniformly approximated
as close as we like by polynomials QnJx) = L~=o al~)xnl, where {nl} satisfies
the above conditions. Thus,

(2)

where €k -+ 0 and nle -+ 00.

Let now nq > nk be sufficiently large. We prove

(3)

for 0 ~ x < 00. Clearly (3) is only a restatement of our theorem.
Now (3) is trivially satisfied for 0 ~ x ~ lAic if nq is sufficiently large

since, by (2), Qn (x) is bounded away from 0 in [O,2Ak] and (x/A,,)nq ~ (l/2)nq

k

ill 0 ~ X ~ iA". Next we prove (3) for x > tA". Clearly I/f(x) < Elj2
for x > tAt: since f(x) -+ 00 as x -+ 00.

since Qn,,(x) > I/Ek there and (x/Ak)nq > 0.
Now finally for x > 2A Ie ,

Qnkex ) + (x/Alet q > I/Ele
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(4)
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trivially holds for sufficiently large nq (in fact we can start the proof by
choosing nq so that (4) should be satisfied for every x ;;, 2A k). This completes
the proof of our theorem.

By using a well-known result of Clarkson and Erdos (Duke Math. J.
10 (1943), Theorem 3) we can easily prove

THEOREM 2. Let f(x) be a non vanishing continuous function defined on
[0, 00). If there exists a sequence ofpolynomials Pk(x) = 2::~=oalk)xnz for which

lim \\_1 __1_11 =0
Pk->oo f(x) Pix) L",[O,oo) ,

where 0 = no < n1 < n2 < ... < nk and 2::::1 link < 00, then f(x) is the
restriction to [0, 00) of an entire function.
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